Data from: The 2018 European heatwave led to stem dehydration but not to consistent growth reductions in forests
No Thumbnail Available
Restricted Availability
Date
2021-11-18, 2021-11-18
Persistent identifier of the Data Catalogue metadata
Editor
Journal title
Journal volume
Publisher
Publication Type
dataset
dataset
dataset
Peer Review Status
Repositories
Access rights
Open
ISBN
ISSN
Description
Heatwaves exert disproportionately strong and sometimes irreversible impacts on forest ecosystems. These impacts remain poorly understood at the tree and species level and across large spatial scales. Here, we investigate the effects of the record-breaking 2018 European heatwave on tree growth and tree water status using a collection of high-temporal resolution dendrometer data from 21 species across 53 sites. Relative to the two preceding years, annual stem growth was not consistently reduced by the 2018 heatwave but stems experienced twice the temporary shrinkage due to depletion of water reserves. Conifer species were less capable of rehydrating overnight than broadleaves across gradients of soil and atmospheric drought, suggesting less resilience toward transient stress. In particular, Norway spruce and Scots pine experienced extensive stem dehydration. Our high-resolution dendrometer network was suitable to disentangle the effects of a severe heatwave on tree growth and desiccation at large-spatial scales in situ, and provided insights on which species may be more vulnerable to climate extremes.