Random Forest trained to estimate Amazon maximum height based on enviromental factors

No Thumbnail Available

Restricted Availability

Date

2020-10-01, 2020-10-01

Persistent identifier of the Data Catalogue metadata

Editor

Journal title

Journal volume

Publisher

Publication Type

software
software

Peer Review Status

Repositories

Access rights

Open

ISBN

ISSN

Description

The Random Forest model obtained MAE = 3.62 m, RMSE  = 4.92 m, and R² = 0.735. we initially considered a total of 18 environmental variables: (1) fraction of absorbed photosynthetically active radiation (FAPAR; in %); (2) elevation above sea level (Elevation; in m);  (3) the component of the horizontal wind towards east, i.e. zonal velocity (u-speed ; in m s-1); (4) the component of the horizontal wind towards north, i.e. meridional velocity (v-speed ; in m s-1); (5) the number of days not affected by cloud cover (clear days; in days yr-1); (6) the number of days with precipitation above 20 mm (days > 20mm; in days yr-1 ); (7) the number of months with precipitation below 100 mm (months < 100mm; in months yr-1 ) ; (8) lightning frequency (flashes rate); (9) annual precipitation (in mm); (10) potential evapotranspiration (in mm); (11) coefficient of variation of precipitation (precipitation seasonality; in %); (12) amount of precipitation on the wettest month (precip. wettest; in mm); (13) amount of precipitation on the driest month (precip. driest; in mm); (14) mean annual temperature (in °C); (15)  standard deviation of temperature (temp. seasonality; in °C); (16) annual maximum temperature (in °C); (17) soil clay content (in %); and (18) soil water content (in %). Among the initial 18 environmental variables, two of them (precipitation on driest month and months < 100mm) were excluded due to high correlation (> 0.80) to other independent variables.

Keyword (yso)

Publication Series

Journal title

Location of the original dataset