PyVBMC: Efficient Bayesian inference in Python
dc.contributor.affiliation | University of Helsinki - Huggins, Bobby | |
dc.contributor.affiliation | University of Helsinki - Li, Chengkun | |
dc.contributor.affiliation | University of Helsinki - Tobaben, Marlon | |
dc.contributor.affiliation | University of Helsinki - Aarnos, Mikko J. | |
dc.contributor.affiliation | University of Helsinki - Acerbi, Luigi | |
dc.contributor.author | Huggins, Bobby | |
dc.contributor.author | Li, Chengkun | |
dc.contributor.author | Tobaben, Marlon | |
dc.contributor.author | Aarnos, Mikko J. | |
dc.contributor.author | Acerbi, Luigi | |
dc.date.accessioned | 2025-03-24T15:11:48Z | |
dc.date.issued | 2023-05-24 | |
dc.date.issued | 2023-05-24 | |
dc.description | This upload archives the v1.0.1 release of PyVBMC, as prepared for submission to the Journal of Open Source Software. PyVBMC is a Python implementation of the Variational Bayesian Monte Carlo (VBMC) algorithm for posterior and model inference for *black-box* computational models. VBMC is an approximate inference method designed for efficient parameter estimation and model assessment when model evaluations are mildly-to-very expensive (e.g., a second or more) and/or noisy. | |
dc.identifier | https://doi.org/10.5281/zenodo.7966315 | |
dc.identifier.uri | https://hydatakatalogi-test-24.it.helsinki.fi/handle/123456789/9368 | |
dc.rights | Open | |
dc.rights.license | bsd-3-clause | |
dc.subject | Bayesian inference | |
dc.subject | machine learning | |
dc.subject | probabilistic modeling | |
dc.subject | computational statistics | |
dc.title | PyVBMC: Efficient Bayesian inference in Python | |
dc.type | software | |
dc.type | software |