Data from: Multidimensional plasticity in the Glanville fritillary butterfly: larval performance is temperature, host and family specific

dc.contributor.affiliationUniversity of Helsinki - Verspagen, Nadja
dc.contributor.affiliationUniversity of Helsinki - Ikonen, Suvi
dc.contributor.affiliationUniversity of Helsinki - Saastamoinen, Marjo
dc.contributor.affiliationUniversity of Helsinki - van Bergen, Erik
dc.contributor.authorVerspagen, Nadja
dc.contributor.authorIkonen, Suvi
dc.contributor.authorSaastamoinen, Marjo
dc.contributor.authorvan Bergen, Erik
dc.date.accessioned2025-03-24T15:11:10Z
dc.date.issued2020-11-18
dc.date.issued2020-11-18
dc.descriptionVariation in environmental conditions during development can lead to changes in life-history traits with long-lasting effects. Here, we study how variation in temperature and host plant, i.e. the consequences of potential maternal oviposition choices, affects a suite of life-history traits in pre-diapause larvae of the Glanville fritillary butterfly. We focus on offspring survival, larval growth rates and relative fat reserves, and pay specific attention to intraspecific variation in the responses (GxExE). Globally, thermal performance and survival curves varied between diets of two host plants, suggesting that host modifies the temperature impact, or vice versa. Additionally, we show that the relative fat content has a host-dependent, discontinuous response to developmental temperature. This implies that a potential switch in resource allocation, from more investment in growth at lower temperatures to storage at higher temperatures, is dependent on the larval diet. Interestingly, a large proportion of the variance in larval performance is explained by differences among families, or interactions with this variable. Finally, we demonstrate that these family-specific responses to the host plant remain largely consistent across thermal environments. Altogether, the results of our study underscore the importance of paying attention to intraspecific trait variation in the field of evolutionary ecology.
dc.identifierhttps://doi.org/10.5061/dryad.kwh70rz2m
dc.identifier.urihttps://hydatakatalogi-test-24.it.helsinki.fi/handle/123456789/8983
dc.rightsOpen
dc.rights.licensecc-zero
dc.subjectdevelopmental plasticity
dc.subjectGxExE
dc.subjectintraspecific variation
dc.subjecttemperature
dc.subjectmultidimensional plasticity
dc.titleData from: Multidimensional plasticity in the Glanville fritillary butterfly: larval performance is temperature, host and family specific
dc.typedataset
dc.typedataset

Files

Repositories