Data from: Combined effects of turbulence and different predation regimes on zooplankton in highly colored water – implications for environmental change in lakes

dc.contributor.affiliationUniversity of Helsinki - Härkönen, Laura
dc.contributor.affiliationUniversity of Helsinki - Pekcan-Hekim, Zeynep
dc.contributor.affiliationUniversity of Helsinki - Hellén, Noora
dc.contributor.affiliationUniversity of Helsinki - Ojala, Anne
dc.contributor.affiliationUniversity of Helsinki - Horppila, Jukka
dc.contributor.authorHärkönen, Laura
dc.contributor.authorPekcan-Hekim, Zeynep
dc.contributor.authorHellén, Noora
dc.contributor.authorOjala, Anne
dc.contributor.authorHorppila, Jukka
dc.coverage.spatialFinland
dc.date.accessioned2025-03-24T15:11:45Z
dc.date.issued2015-10-08
dc.date.issued2015-10-08
dc.descriptionIn aquatic ecosystems, predation is affected both by turbulence and visibility, but the combined effects are poorly known. Both factors are changing in lakes in the Northern Hemisphere; the average levels of turbulence are predicted to increase due to increasing wind activities, while water transparency is decreasing, e.g., due to variations in precipitation, and sediment resuspension. We explored experimentally how turbulence influenced the effects of planktivorous fish and invertebrate predators on zooplankton when it was combined with low visibility caused by high levels of water color. The study was conducted as a factorial design in 24 outdoor ponds, using the natural zooplankton community as a prey population. Perch and roach were used as vertebrate predators and Chaoborus flavicans larvae as invertebrate predators. In addition to calm conditions, the turbulent dissipation rate used in the experiments was 10−6 m2 s−3, and the water color was 140 mg Pt L−1. The results demonstrated that in a system dominated by invertebrates, predation pressure on cladocerans increased considerably under intermediate turbulence. Under calm conditions, chaoborids caused only a minor reduction in the crustacean biomass. The effect of fish predation on cladocerans was slightly reduced by turbulence, while predation on cyclopoids was strongly enhanced. Surprisingly, under turbulent conditions fish reduced cyclopoid biomass, whereas in calm water it increased in the presence of fish. We thus concluded that turbulence affects fish selectivity. The results suggested that in dystrophic invertebrate-dominated lakes, turbulence may severely affect the abundance of cladocerans. In fish-dominated dystrophic lakes, on the other hand, turbulence-induced changes in planktivory may considerably affect copepods instead of cladocerans. In lakes inhabited by both invertebrates and fish, the response of top-down regulation to turbulence resembles that in fish-dominated systems, due to intraguild predation. The changes in planktivorous predation induced by abiotic factors may possibly cascade to primary producers.
dc.identifierhttps://doi.org/10.5061/dryad.74gp6
dc.identifier.urihttps://hydatakatalogi-test-24.it.helsinki.fi/handle/123456789/9350
dc.rightsOpen
dc.rights.licensecc-zero
dc.subjectChaoboridae
dc.subjectRutilus rutilus
dc.subjectPerca fluviatilis
dc.subjectmesocosm
dc.subjectCladocera
dc.subjectChaoborus flavicans
dc.subjectIntermediate turbulence
dc.subjectCopepoda
dc.subjectplanktivorous predation
dc.subjectcrustacean zooplankton community
dc.titleData from: Combined effects of turbulence and different predation regimes on zooplankton in highly colored water – implications for environmental change in lakes
dc.typedataset
dc.typedataset