Maximum entropy model trained to estimate probability to host trees taller then 70 m based on environmental factors

No Thumbnail Available

Restricted Availability

Date

2020-10-05, 2020-10-05

Persistent identifier of the Data Catalogue metadata

Editor

Journal title

Journal volume

Publisher

Publication Type

software
software

Peer Review Status

Repositories

Access rights

Open

ISBN

ISSN

Description

Focusing only on the tallest trees - those over 70 m in height – we built an environmental envelope model to assess the conditions which allow them to occur. We employed the maximum entropy approach (MaxEnt) commonly applied to modelling species geographic distributions with presence-only data to discriminate suitable versus unsuitable areas for the species. We initially considered a total of 18 environmental variables: (1) fraction of absorbed photosynthetically active radiation (FAPAR; in %); (2) elevation above sea level (Elevation; in m);  (3) the component of the horizontal wind towards east, i.e. zonal velocity (u-speed ; in m s-1); (4) the component of the horizontal wind towards north, i.e. meridional velocity (v-speed ; in m s-1); (5) the number of days not affected by cloud cover (clear days; in days yr-1); (6) the number of days with precipitation above 20 mm (days > 20mm; in days yr-1 ); (7) lightning frequency (flashes rate); (8) annual precipitation (in mm); (9) potential evapotranspiration (in mm); (10) coefficient of variation of precipitation (precipitation seasonality; in %); (11) amount of precipitation on the wettest month (precip. wettest; in mm); (12) mean annual temperature (in °C); (13)  standard deviation of temperature (temp. seasonality; in °C); (14) annual maximum temperature (in °C); (15) soil clay content (in %); and (16) soil water content (in %).

Keyword (yso)

Publication Series

Journal title

Location of the original dataset