Maximum entropy model trained to estimate probability to host trees taller then 70 m based on environmental factors
No Thumbnail Available
Restricted Availability
Date
2020-10-05, 2020-10-05
Persistent identifier of the Data Catalogue metadata
Editor
Journal title
Journal volume
Publisher
Publication Type
software
software
software
Peer Review Status
Repositories
Access rights
Open
ISBN
ISSN
Description
Focusing only on the tallest trees - those over 70 m in height – we built an environmental envelope model to assess the conditions which allow them to occur. We employed the maximum entropy approach (MaxEnt) commonly applied to modelling species geographic distributions with presence-only data to discriminate suitable versus unsuitable areas for the species. We initially considered a total of 18 environmental variables: (1) fraction of absorbed photosynthetically active radiation (FAPAR; in %); (2) elevation above sea level (Elevation; in m); (3) the component of the horizontal wind towards east, i.e. zonal velocity (u-speed ; in m s-1); (4) the component of the horizontal wind towards north, i.e. meridional velocity (v-speed ; in m s-1); (5) the number of days not affected by cloud cover (clear days; in days yr-1); (6) the number of days with precipitation above 20 mm (days > 20mm; in days yr-1 ); (7) lightning frequency (flashes rate); (8) annual precipitation (in mm); (9) potential evapotranspiration (in mm); (10) coefficient of variation of precipitation (precipitation seasonality; in %); (11) amount of precipitation on the wettest month (precip. wettest; in mm); (12) mean annual temperature (in °C); (13) standard deviation of temperature (temp. seasonality; in °C); (14) annual maximum temperature (in °C); (15) soil clay content (in %); and (16) soil water content (in %).