Data from: Stream diatoms exhibit weak niche conservation along global environmental and climatic gradients

dc.contributor.affiliationUniversity of Helsinki - Soininen, Janne
dc.contributor.affiliationUniversity of Helsinki - Jamoneau, Aurelien
dc.contributor.affiliationDept of Biology, Univ. of Texas at Arlington Arlington TX USA* - Tison-Rosebery, Juliette
dc.contributor.affiliationAquatic Ecosystems and Global Changes Research Unit, IRSTEA Cestas France* - Leboucher, Thibault
dc.contributor.affiliationUniversity of Helsinki - Wang, Jianjun
dc.contributor.affiliationDept of Hydrobiology, Adam Mickiewicz Univ Poznań Poland* - Kokocinski, Mikolaj
dc.contributor.affiliationThe University of Texas at Arlington - Passy, Sophia I.
dc.contributor.authorSoininen, Janne
dc.contributor.authorJamoneau, Aurelien
dc.contributor.authorTison-Rosebery, Juliette
dc.contributor.authorLeboucher, Thibault
dc.contributor.authorWang, Jianjun
dc.contributor.authorKokocinski, Mikolaj
dc.contributor.authorPassy, Sophia I.
dc.coverage.spatialNew Zealand
dc.coverage.spatialAntilles
dc.coverage.spatialFinland
dc.coverage.spatialFrance
dc.coverage.spatialUS
dc.coverage.spatialLa Reunion
dc.date.accessioned2025-03-24T15:19:26Z
dc.date.issued2018-06-14
dc.date.issued2018-06-14
dc.descriptionNiche conservatism (NC) describes the scenario in which species retain similar characteristics or traits over time and space, and thus has potentially important implications for understanding their biogeographic distributions. Evidence consistent with NC includes similar niche properties across geographically distant regions. We investigated whether NC was evident in stream diatom morphospecies by modeling species responses to environmental and climatic variables in a set of calibration sites (from the US) and then evaluated the models with test sets (from France, Finland, New Zealand, Antilles and La Réunion). We also examined whether diatom species showed congruency in environmental niche optima and niche breadths between the study regions, and whether species occupancy and functional traits influenced the observed patterns. We used boosted regression tree models with local environmental variables and climatic variables as predictors. We detected low NC in both environmental and climate models and a lack of consistent differences in NC between widely distributed and regionally rare species and among functional groups. For all species, diatom environmental and climatic optima varied clearly between the regions but showed some positive relationships especially for pH and total phosphorus. Diatom niche breadths were only weakly correlated between the US and the other regions. We demonstrated that diatoms showed overall relatively little NC globally, and NC was especially low for climatic variables. Collectively, these findings suggest that there may exist locally adapted lineages within the diatom morphospecies or diatoms possess some adaptation potential for differences in temperature. We argue that in diatoms, environmental and especially climate models may not be transferrable in space globally but need regional diatom data for calibration because species niches seem to differ among geographical regions.
dc.identifierhttps://doi.org/10.5061/dryad.c4h3m91
dc.identifier.urihttps://hydatakatalogi-test-24.it.helsinki.fi/handle/123456789/10568
dc.rightsOpen
dc.rights.licensecc-zero
dc.subjectBacillariophyceae
dc.titleData from: Stream diatoms exhibit weak niche conservation along global environmental and climatic gradients
dc.typedataset
dc.typedataset